zurück Home Mengenlehre
allgemeines
Menge Eine Menge besteht aus Elementen. Die Elemente haben keine Reihenfolge.
leere Menge Enthält keine Elemente  
Elemente x ∈ M x ist ein Element der Menge M
Beispiele aufzählende Form:
M = {blau, gelb, rot}
Menge der geraden Zahlen: G = { 4, 6, 8, 10, … } M10 = {X | X ist eine Ziffer im Dezimalsysten}
Teilmenge B ⊆ A B ist eine Teilmenge von A
Schnittmenge M = A ∩B M gleich A und B
Differenz, Restmenge D = A \ B A: grün + rot, B: gelb + rot
A \ B: nur grün ohne rot, A ohne B
Kartesisches Produkt, Kreuzprodukt A ( {1,2}
B = {x,y,z}
A X B = { (1;x),(1;y),(1;z),(2;x),(2;y),(2;z)}
B X A = { (x;1),(x;2),(y;1),(y;2),(z;1),(z;2)}
A X B ≠ B X A
Abbildung  Abbildung Mengen
Eine Abbildung f ordnet jedem Element von M Element von W zu.
Abbildung M auf W
umkehrbar eindeutige Abbildung umkehrbar eindeutige Abbildung Die Elemente von M und W sind einander eindeutig zugeordnet. Bijektion, bijektive Abbildung
Formel: Bijektion
geordnete Menge Aus a < b und b < c folgt a < c Bespiel rationale Zahlen 1,2,3,4 ...
Ramsey-Theorie Jede große ungeordnete Menge - insbesondere willkürlich verteilte Punkte auf einer Ebene - enthält stets eine geordnete Teilmenge.

Impressum                               Zuletzt geändert am 10.09.2014 17:14